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Abstract: 
 
Ice climbing anchors are seemingly simple, yet have a mystique that surrounds their use and overall 
strengths. Not all ice climbing anchors are used in a standard configuration. 
 
Placing an ice screw into an already existing ice screw hole is called re-boring. Re-boring of ice screws is 
a common practice among ice climbers. Re-boring is typically preferred when placing a screw to avoid 
creating adjacent holes that could serve as a potential fracture propagation point. 

We evaluated re-boring strengths for several ice screw designs to determine the strength as a function of 
length of screw. Slow pull tests were performed, and the results were compared with prior data from drop 
testing on ice screws. Static pull testing using lake ice was compared with drop testing on waterfall ice and 
found to be a good substitute test medium. 

In addition, we evaluated Abalakov anchors (a.k.a. V-thread anchors), with 7mm Perlon cord as well as 1” 
tubular webbing in different configurations. Their strengths were then compared with that of the single re-
bored ice screws. 

The nature of ice is a continually changing medium and hard to predict in the field. However, the actual 
strengths shown from our testing methods in the real-world environment make a strong case for the 
strength of re-boring. Recently, re-bored holes in a freezing environment were found to be strong enough in 
most configurations. Abalakov ice anchors were also found to be strong, provided that enough ice area was 
enclosed by the anchor. Placing Abalakov anchors vertically appeared to be stronger than placing them 
horizontally. Precautions and recommendations for use of ice climbing anchors stem from our evaluation 
of the data. 
 
 
I. INTRODUCTION: 
 
Ice climbing anchors have traditionally been shunned as not being strong anchors, 
especially when compared to rock. Perhaps, this arises in part from the fact that ice is a 
poorly understood medium and has a mystique about it due to its perceived unpredictable 
nature at times.  
 
In technical ice climbing, the technique of re-boring (Figure 1) has been utilized over the 
years. Several legitimate scenarios exist for re-boring an ice screw. Finding a good 
placement for an ice screw is often difficult. With the advent of more traffic on ice 
climbs, the usual “easy” ice screw placements may have already been used. What 
remains is the conundrum of choosing where to place a screw. One option is to place a 
screw into an already existing hole that was created by a previous ice climbing party. 
That hole is an uncontrolled factor as to what type of screw was used initially, when it 
was drilled, and what environmental conditions have occurred since the hole was left 
behind.  
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Figure 1 Placing a screw into an existing hole is called re-boring. 
 
Another scenario that often occurs is when an ice climber may be leading a pitch of ice at 
their difficulty threshold, finds an old hole that appears to be usable, and wonder if it is 
reasonable to use that hole. A dull screw that doesn’t “bite” into the ice to start a new 
hole is always problematic. Time can be of the essence when the climber loses all 
strength and risks a dangerous fall. Re-boring an ice screw seems to be a quick alternative 
to creating an entirely new hole and can save the climber strength by decreasing the 
amount of time spent to place a fresh ice screw. 
 
Other legitimate scenarios exist for re-boring an ice screw. The above are merely 
examples and are non-exhaustive. 
 
Much conjecture has been created, leading to dogma, about how good these placements 
are or are not. We now know that “psychological protection” (a piece of protection that 
the climber may think dubious) produces less of an impact force on the system, even if a 
piece fails, rather than just climbing quickly for the belay stance. “Running it out” 
produces larger forces than a fall that pulls out a piece of protection because of the 
residual fall factor after a failed anchor point1. We also know that air pockets (not aerated 
ice) near ice screw placements are bad and cause fracturing of the ice more readily. Ice is 
a difficult medium to understand, and its fracture mechanics can be explained to a certain 
degree2, but inherently, it is not possible to anticipate the nature of fracture, propagation, 
and collapse in the field as yet. 
 
Other types of ice anchors exist, such as the bollard and Abalakov. The bollard is fairly 
passé and somewhat dangerous on ice, because of decapitation and slipping, but it is used 
in the alpine environment. The threaded Abalakov, however, is used extensively.  
 
 
Threaded Ice Anchors: Abalakovs (a.k.a. V-threads) 
 
Vitaly Mikhaylovich Abalakov, a Russian, is credited for the innovation of drilling into 
the ice in two places, such that the two drilled holes would come together as far back as 
possible to create a continuous hole. A rope or piece of cord could then be threaded 
through and used as an anchor, as shown in Figure 2. This technique is also commonly 
known as a “V-thread.” With it, a climber can retreat without leaving much, if any, gear 
behind, thereby being able to abseil many pitches in a row. Commonly, climbers will 
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leave a piece of webbing or cordage behind in the anchor so that climbing ropes do not 
become stuck in the back of the Abalakov. At other times, the V-thread is used as an 
anchoring point for climbing competitions, rescue anchors, top rope anchors, or other 
applications. 
 

 
Figure 2 shows a traditional horizontally made Abalakov ice anchor. Notice that in the example on the 
right, the cord is tied off with a flat overhand. This is usually acceptable for rappelling only and not 
advocated for lead configuration. 
 
Anchor strength studies were first evaluated and published in Canada by Joe Josephson3. 
Since then, many people have accepted that the Abalakov anchor as a standard rappel 
anchor for descent from ice climbs. The pendulum then swung in public opinion that the 
Abalakov was stronger than an ice screw. This led to the idea that an Abalakov anchor 
was strong enough to belay from in the multi-pitch climbing environment. 
 
 
II. HYPOTHESES: 
 
The working hypotheses to be tested are: 

1) Re-bored ice screws are strong enough* to arrest a UIAA4 fall. 
2) The over driven ice screw in a shorter original hole is strong enough* to take a 

leader fall on. 
3) Shorter screws placed in longer screw holes are as strong as longer screws placed 

in longer screw holes. 
4) Abalakovs are stronger than ice screws. 
5) Abalakov strength is directly related to the area it encompasses rather than the 

orientation. 
 
* Strong enough to hold 7-8kN1 
 
III. BACKGROUND: 
 
Fortunately, there are very few case reports for failed re-bored ice screws resulting in 
injury. The lack of published literature available limits our ability to perform a 
retrospective study.  
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Climbers gain experience through feedback mechanisms, both positive and negative. 
Therefore, the thought process is that “if an anchor doesn’t fail, then that type of anchor 
should be good enough to use the next time.” In other words, those who never fail a 
placement will gain a sense of comfort from experience. Fortune smiles on climbers most 
of the time, but it is impossible to know how strong is “strong enough” without formal 
testing where failure is observed.  
 
Much has been assumed about re-boring. The comments typically heard include: “the 
placements aren’t strong enough to hold a fall; it’s a waste of time to place them; and 
they’re psychological pro.”  
 
When considering whether an ice screw is stronger than an Abalakov/V-thread 
placement, unpublished preliminary testing proposed that Abalakov anchors are weaker 
than single screw placements in streambed ice5. 
 
The actual mechanics of ice fracture has been studied, especially in the marine ice realm. 
Although it is not our focus to evaluate these characteristics, it is important to understand 
that freshwater ice fails in uniaxial tension via transgranular cleavage6. The mechanics of 
tensile failure are described in both nucleation and propagation2 . A direct correlation 
exists between grain size and fracture propagation: the larger the grain size, the greater 
the propagation of fracture. Brittle compressive failure is more complex and fails via 
longitudinal splitting in unconfined fresh-water ice 7.  
 
Research by Schulson indicates that ice strength depends on the square root of grain size, 
rate of loading, and temperature. 
 
For ease of testing, a static pull test was used to load ice screws placed in lake ice. The 
grain size of ice typically found on ice walls and lake ice will be about the same, so grain 
size effect for lake ice and wall ice will be similar. Likewise, the temperature of the lake 
ice and waterfall ice were comparable and not considered to be a source of strength 
difference between lake ice and waterfall ice. 
 
The ratio of rate of loading between slow pulls and drop test are on the order of 1000x. 
At really slow rates of loading (i.e., moving as slow as a glacier), ice will be ductile, with 
the yield strength increasing with load rate. For faster loading rates, the strength of ice 
decreases with rate of loading. Based on laboratory testing by Schulson, failure stress at 
1e-3/sec (slow pull) are about 20% higher than strain rates at 1e-1/sec (drop test). Thus, 
for our slow pull test, we could expect some increase in the strength of ice under slow 
pull compared to drop testing. Differences may also exist due to the difference between 
lake ice and waterfall ice. Lake ice will likely have fewer defects than waterfall ice. 
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IV. METHODS: 
 
We did slow pull tests on ice screw re-boring configurations based on ice screws placed 
at a positive angle relative to perpendicular of the ice face. This positive angle is 
considered the proper configuration for lead climbing8,9. 
 
Slow pull test in accordance with the Cordage Institute standard rate of pull of 0.5”-1.0” 
per second powered by a hydraulic ram was used for pull testing of the screws. The ram 
was anchored to the ice. Ice and air temperatures (Figure 3), as well as times and details 
of each test, were recorded for the slow pull tests at Echo Lake , Colorado (Figure 4), 
located near the town of Pagosa Springs. Several slow pull tests were done on Abalakovs 
in Ouray at the new Kid’s wall, since the ice was convenient and homogenous.  
 

 
Figure 3 (left) measuring air and ice temperatures (°C); (middle) measuring depth and angle of holes (cm); 
(right) simple evaluation of fracture characteristics. 
 
 

 
Figure 4: (left) showing the nature of homogenous lake ice as a control medium; (middle) slow pull tests 
on waterfall ice in Ouray; (right) the drop testing grounds for waterfall ice in Ouray Ice Park. 
 
For our testing, we needed to use the same medium for making a direct comparison 
analysis. We chose lake ice for pull testing, not only because it is a good control but also 
for ease of access and reproducibility of our testing worldwide. 
 
A control medium with variability as small as possible is hard to find. The UIAA has 
recently published a safety standard10 on how ice screws are to be tested in order to 
receive a Comité Européen de Normalisation (CEN) rating for sales in countries. 
YTONG11 has also been considered for ice screw testing, but this medium is not readily 
available for our testing purposes. 
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Our drop testing was performed at the Ouray Ice Park, Colorado. Two routes were used 
to perform the drop testing on, both located at the Lower Bridge: Rhythm Method WI5 
(the same route that we used in 2005-06), and the 2008 Competition Route (on the ice 
section between the mixed rock climbing and the diving board) that had not been used by 
any ice climbers prior to our testing. This site provided a good control area. The two 
routes are on distinctly different aspects in the Uncompahgre Gorge in order to get a 
better sampling of the ice at the Ouray Ice Park. 
 
Ice Screws 
 
The general specifications of the UIAA are outlined in Figure 5. There is no mention of 
any testing that has been performed, where ice screws had been tested in re-bored holes. 
Our approach did not follow UIAA specifications. The UIAA specifications call for 
strength testing for screws loaded in shear and loaded in tension. The UIAA 
specifications were designed to test the strength of the screw, not the strength of the 
screw placement in ice. The specifications require that the screw not fail below a critical 
load. Our testing considered loads in shear only and included the tests where each screw 
was loaded to ice failure. 
  

 
Figure 5: UIAA specifications for testing ice screws in different mediums. (permission of use by the UIAA) 
 
We performed two drop tests on re-bored and over drilling in combination using a longer 
screw in a shorter hole. The results were as strong as if it were a new hole. We then 
focused our remaining tests on the worst-case scenario, whereby a climber would come 
upon a long hole and only have a short screw for placement. We alternated holes drilled 
by the same and different manufactures in conjunction with using a short screw 
 
We repeated testing on some screws that had either been used in drop testing already or 
used in a slow pull test. The rationale is that we were not as concerned with the strength 
of the screw as we were with the strength of the re-bored hole. Interestingly enough, the 
strengths of the screws did vary somewhat as a function of multiple uses, as some screws 
would break before the re-bored hole failed. If the screw showed obvious signs of fatigue, 
then it was not used again. In one case during a slow pull, the screw fractured at the 
midpoint of the tube; several other times the eye of the screw would fracture. Screw 
failure was not observed for new screws that had not been used in prior testing.  
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Orientation: 
There is still debate, as well as inconclusive results, from screw angle placement11,12,13. It 
has been fairly well documented that on static pull testing, “confirming that the most 
effective threads are those near the hanger (and that the reverse thread orientation may be 
stronger than regular thread orientation)…the holding strength does not depend 
significantly on thread type, but rather on the radial and axial dimensions of the screw”. 
The general strength of an ice screw is based on loading rate duration rather a faster 
loading rate13.  
 
It is well understood that placement of an ice screw, whether in dynamic shock loading or 
slow pull testing, produces the strongest results when NOT placed in a negative angle 
(i.e., using the screw in a levering configuration). So, from somewhere between 0° and 
+20° is the ideal angle, and that was our target range for testing re-bored screws. 
 
 
RESULTS: 
 
Re-bored Ice Screw Results: 
 
A statistical comparison of drop test results and slow pull testing is presented in Table 1. 
These results indicate drop tests on waterfall ice and slow pull tests on lake ice produced 
similar results.  
 

Drop testing statistics  
Slow pulls in Lake Ice - ALL 

Screws 
 kN   kN 
Mean 10.6  Mean 11.1 
Standard Error 1.3  Standard Error 0.6 
Standard Deviation 4.9  Standard Deviation 3.7 
Minimum 3.9  Minimum 5.5 
Maximum 22.0  Maximum 19.7 
Count 15.0  Count 38.0 
Confidence Level(95.0%) 2.7  Confidence Level(95.0%) 1.2 

Table 1 Re-bored ice screws; all results by testing type. 
 
  

Redline Failures - Re-bored Ice Screws kN 
Beverly/Attaway 2005-06 - Drop Tests (non-re-bored) 10.14 
Beverly/Attaway 2007-08 - Drop Tests 10.58 
Beverly/Attaway 2007-08 - Slow pulls Lake Ice 11.09 

Table 2 The overall averages of failure forces 
 
 
A very high failure strength (22.5 kN) for a re-bored ice screw was achieved by leaving a 
re-bored screw overnight with a test mass of 80kg hanging from it for more than ten 
hours. The temperatures recorded were less than -30°C in the Ice Park that night. There 
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Figure 17 Multi-pitch scenario: Leader falling onto a single ice anchor  (in this case a single horizontal 
Abalakov) that the belayer is also attached to in the UIAA fall test scenario, a potentially deadly 
combination. 
 
Our sample size is still what we consider to be small and non-exhaustive. The spread is 
large, and ice is a variable medium. Learning good skills at where and when to place ice 
screws remains an art, although our science is helping us to compose a better picture of 
ice anchor behavior experienced in real-world conditions. 
 
 
CONCLUSIONS: 
 
These tests were performed in what the authors consider to be “good ice1.” Lake ice 
appears to be a good testing medium for comparison analysis to waterfall ice that is 
homogenous.  
 

1) Based on the variability of anchor strength observed in our test results, we must 
accept the null hypothesis that re-bored ice screws are too weak to withhold a 
UIAA fall factor all of the time. They are, however, stronger than expected and 
compare closely with an ice screw placed in virgin ice.  

2) Re-bored ice screws are nearly as strong as freshly drilled holes. It is likely that 
any refreezing process that decreases the diameter of the hole over time is of 
benefit for a re-bored screw. 

3) A re-bored ice screw that is left in frozen temperatures overnight will likely freeze 
in quite solid, even with a mass of 80 kg suspended from it, and not experience 
“melt-out,” even if placed in a positive angle. 
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4) The greater the area an Abalakov anchor has, the more likely it is to be a stronger 
anchor. So, save the longest screw for the belay to make an Abalakov using 60° x 
60° x 60° as the best guide line for angle drilling. 

5) We accept the null hypothesis that a single ice screw, even a short re-bored screw, 
is generally about the same in strength as a horizontal Abalakov anchor. 

6) The longer the ice screw is, the stronger the ice anchor will be, regardless of 
whether it is a freshly placed screw or a re-bored screw. 

7) There is no significant difference when comparing the three manufacturer’s brand 
ice screws when placed into an old hole of the same or different manufacturer. 

8) Reverse threads did not appear to make a difference in any regard. 
9) The optimum angle placement is >8° and <16° from our regression analysis. 
10) The vertical Abalakov is superior in strength to the tradition horizontal or other 

configurations tested. We call this the “A-thread”, since discussions with Vince 
Anderson inspired investigation into other configurations. 

11) Drop Test data on waterfall ice were weaker than Slow Pull test data on lake ice.  
Rescue anchors for slow pulls will likely act as stronger placements than when 
climbers fall onto ice screws. 

12) NEVER use a single anchor (A-thread, V-thread, or ice screw) as the only anchor 
when high forces are expected, as seen with multi-pitch climbing. 

 
 
FUTURE RESEARCH: 
 

1) Numerical simulations to evaluate zones of tension and compression for a better 
understanding into the mechanics of ice anchor fracture for both Abalakov-style 
ice anchors and ice screws. 

2) Evaluate other types of screws that have diameters and threads of different sizes. 
3) It is likely that a re-bored screw may be stronger when compared to the alternative 

of placing a new hole next to an old hole. Nearby holes can result in stress 
concentrations and act as a fracture nucleation site. We did not evaluate the 
possible reduction in anchor strength due to nearby drill holes.  

4) A slight strength difference was observed between 7 mm cord and 1” tubular 
webbing. More testing may be needed to see if this strength difference is 
significant.  

 
Note: Overdriving (red-lining) ice screws in the drop testing environment is dangerous. Flying ice 
debris, ice screw missiles, snapping ropes, and the general objective hazard of being in the 
vertical ice environment, plus having to record data and also be aware of everything else going 
on, is taxing as well as expensive. Many thanks goes out to Angie Lucht for her help in drop 
testing and to Nic McKinley for his efficient help on the slow pull tests performed on lake ice. 
 
We humbly and gratefully thank out sponsors PMI Rope, Grivel North America, Petzl, Black 
Diamond Equipment, Ltd, and the Mountain Rescue Association. Without their help, this research 
would not have been possible. Also, we thank the Ouray Ice Park for the use of their facilities. 
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